Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659841

RESUMO

Background: Heart rhythm relies on complex interactions between the electrogenic membrane proteins and intracellular Ca 2+ signaling in sinoatrial node (SAN) myocytes; however, the mechanisms underlying the functional organization of the proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, however the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods: In vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca 2+ imaging, immunofluorescent and electron microscopy analysis were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results: In both mouse and human SANs, caveolae compartmentalized HCN4, Ca v 1.2, Ca v 1.3, Ca v 3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca 2+ release events (LCRs), which diffuse across ∼15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca 2+ current, a negative shift of the HCN current ( I f ) activation curve, and 40% reduction of Na + /Ca 2+ -exchanger function. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions: SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially representing a new dimension of SAN remodeling and providing a newly recognized target for therapy.

2.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496584

RESUMO

BACKGROUND AND AIMS: Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS: We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS: Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.

3.
JACC Clin Electrophysiol ; 9(12): 2642-2648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768254

RESUMO

Despite evidence that women are at higher risk of drug-induced torsade de pointes and sudden cardiac death, female sex is vastly underrepresented in cardiovascular research, thus limiting our fundamental understanding of sex-specific arrhythmia mechanisms and our ability to predict arrhythmia propensity. To address this urgent clinical and preclinical need, we developed a quantitative tool that predicts the electrophysiological response to drug administration in female cardiomyocytes starting from data collected in males. We demonstrate the suitability of our translator for sex-specific cardiac safety assessment and include proof-of-concept application of our translator to in vitro and in vivo data.


Assuntos
Síndrome do QT Longo , Humanos , Masculino , Feminino , Síndrome do QT Longo/induzido quimicamente , Preparações Farmacêuticas , Eletrocardiografia , Coração , Arritmias Cardíacas/induzido quimicamente
4.
Am J Physiol Heart Circ Physiol ; 325(4): H896-H908, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624096

RESUMO

By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Humanos , Átrios do Coração , Doença do Sistema de Condução Cardíaco , Ventrículos do Coração , Eletrofisiologia
5.
Angew Chem Int Ed Engl ; 62(48): e202309012, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37639631

RESUMO

Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.


Assuntos
Enzimas Imobilizadas , Biocatálise
6.
Cardiovasc Res ; 119(13): 2294-2311, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37523735

RESUMO

AIMS: Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS: Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS: Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.

7.
Biophys J ; 122(15): 3019-3021, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478843

RESUMO

Recent studies have provided valuable insight into the key mechanisms contributing to the spatiotemporal regulation of intracellular Ca2+ release and Ca2+ signaling in the heart. In this research highlight, we focus on the latest findings published in Biophysical Journal examining the structural organization of Ca2+ handling proteins and assessing the functional aspects of intracellular Ca2+ regulation in health and the detrimental consequences of Ca2+ dysregulation in disease. These important studies pave the way for future mechanistic investigations and multiscale understanding of Ca2+ signaling in the heart.


Assuntos
Sinalização do Cálcio , Coração , Sinalização do Cálcio/fisiologia , Biofísica , Proteínas/metabolismo , Cálcio/metabolismo
8.
Dis Model Mech ; 16(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293707

RESUMO

Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Fibrilação Atrial/genética , Átrios do Coração , Proteínas de Ligação ao Cálcio , Miócitos Cardíacos
9.
J Physiol ; 601(13): 2537-2539, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211722
10.
Circ Res ; 132(9): e116-e133, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36927079

RESUMO

BACKGROUND: Small-conductance Ca2+-activated K+ (SK)-channel inhibitors have antiarrhythmic effects in animal models of atrial fibrillation (AF), presenting a potential novel antiarrhythmic option. However, the regulation of SK-channels in human atrial cardiomyocytes and its modification in patients with AF are poorly understood and were the object of this study. METHODS: Apamin-sensitive SK-channel current (ISK) and action potentials were recorded in human right-atrial cardiomyocytes from sinus rhythm control (Ctl) patients or patients with (long-standing persistent) chronic AF (cAF). RESULTS: ISK was significantly higher, and apamin caused larger action potential prolongation in cAF- versus Ctl-cardiomyocytes. Sensitivity analyses in an in silico human atrial cardiomyocyte model identified IK1 and ISK as major regulators of repolarization. Increased ISK in cAF was not associated with increases in mRNA/protein levels of SK-channel subunits in either right- or left-atrial tissue homogenates or right-atrial cardiomyocytes, but the abundance of SK2 at the sarcolemma was larger in cAF versus Ctl in both tissue-slices and cardiomyocytes. Latrunculin-A and primaquine (anterograde and retrograde protein-trafficking inhibitors) eliminated the differences in SK2 membrane levels and ISK between Ctl- and cAF-cardiomyocytes. In addition, the phosphatase-inhibitor okadaic acid reduced ISK amplitude and abolished the difference between Ctl- and cAF-cardiomyocytes, indicating that reduced calmodulin-Thr80 phosphorylation due to increased protein phosphatase-2A levels in the SK-channel complex likely contribute to the greater ISK in cAF-cardiomyocytes. Finally, rapid electrical activation (5 Hz, 10 minutes) of Ctl-cardiomyocytes promoted SK2 membrane-localization, increased ISK and reduced action potential duration, effects greatly attenuated by apamin. Latrunculin-A or primaquine prevented the 5-Hz-induced ISK-upregulation. CONCLUSIONS: ISK is upregulated in patients with cAF due to enhanced channel function, mediated by phosphatase-2A-dependent calmodulin-Thr80 dephosphorylation and tachycardia-dependent enhanced trafficking and targeting of SK-channel subunits to the sarcolemma. The observed AF-associated increases in ISK, which promote reentry-stabilizing action potential duration shortening, suggest an important role for SK-channels in AF auto-promotion and provide a rationale for pursuing the antiarrhythmic effects of SK-channel inhibition in humans.


Assuntos
Fibrilação Atrial , Animais , Humanos , Fibrilação Atrial/metabolismo , Apamina/metabolismo , Apamina/farmacologia , Primaquina/metabolismo , Primaquina/farmacologia , Calmodulina/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/uso terapêutico , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
11.
Chemistry ; 29(31): e202300697, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36893219

RESUMO

Multi-enzymatic cascades exploiting engineered enzymes are a powerful tool for the tailor-made synthesis of complex molecules from simple inexpensive building blocks. In this work, we engineered the promiscuous enzyme 4-oxalocrotonate tautomerase (4-OT) into an effective aldolase with 160-fold increased activity compared to 4-OT wild type. Subsequently, we applied the evolved 4-OT variant to perform an aldol condensation, followed by an epoxidation reaction catalyzed by a previously engineered 4-OT mutant, in a one-pot two-step cascade for the synthesis of enantioenriched epoxides (up to 98 % ee) from biomass-derived starting materials. For three chosen substrates, the reaction was performed at milligram scale with product yields up to 68 % and remarkably high enantioselectivity. Furthermore, we developed a three-step enzymatic cascade involving an epoxide hydrolase for the production of chiral aromatic 1,2,3-prim,sec,sec-triols with high enantiopurity and good isolated yields. The reported one-pot, three-step cascade, with no intermediate isolation and being completely cofactor-less, provides an attractive route for the synthesis of chiral aromatic triols from biomass-based synthons.


Assuntos
Aldeído Liases , Compostos de Epóxi , Compostos de Epóxi/química , Biomassa , Biocatálise , Aldeído Liases/química , Frutose-Bifosfato Aldolase/química
12.
J Physiol ; 601(13): 2547-2592, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36744541

RESUMO

This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Humanos , Arritmias Cardíacas , Miócitos Cardíacos
13.
J Physiol ; 601(13): 2685-2710, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36114707

RESUMO

Disruption of the transverse-axial tubule system (TATS) in diseases such as heart failure and atrial fibrillation occurs in combination with changes in the expression and distribution of key Ca2+ -handling proteins. Together this ultrastructural and ionic remodelling is associated with aberrant Ca2+ cycling and electrophysiological instabilities that underlie arrhythmic activity. However, due to the concurrent changes in TATs and Ca2+ -handling protein expression and localization that occur in disease it is difficult to distinguish their individual contributions to the arrhythmogenic state. To investigate this, we applied our novel 3D human atrial myocyte model with spatially detailed Ca2+ diffusion and TATS to investigate the isolated and interactive effects of changes in expression and localization of key Ca2+ -handling proteins and variable TATS density on Ca2+ -handling abnormality driven membrane instabilities. We show that modulating the expression and distribution of the sodium-calcium exchanger, ryanodine receptors and the sarcoplasmic reticulum (SR) Ca2+ buffer calsequestrin have varying pro- and anti-arrhythmic effects depending on the balance of opposing influences on SR Ca2+ leak-load and Ca2+ -voltage relationships. Interestingly, the impact of protein remodelling on Ca2+ -driven proarrhythmic behaviour varied dramatically depending on TATS density, with intermediately tubulated cells being more severely affected compared to detubulated and densely tubulated myocytes. This work provides novel mechanistic insight into the distinct and interactive consequences of TATS and Ca2+ -handling protein remodelling that underlies dysfunctional Ca2+ cycling and electrophysiological instability in disease. KEY POINTS: In our companion paper we developed a 3D human atrial myocyte model, coupling electrophysiology and Ca2+ handling with subcellular spatial details governed by the transverse-axial tubule system (TATS). Here we utilize this model to mechanistically examine the impact of TATS loss and changes in the expression and distribution of key Ca2+ -handling proteins known to be remodelled in disease on Ca2+ homeostasis and electrophysiological stability. We demonstrate that varying the expression and localization of these proteins has variable pro- and anti-arrhythmic effects with outcomes displaying dependence on TATS density. Whereas detubulated myocytes typically appear unaffected and densely tubulated cells seem protected, the arrhythmogenic effects of Ca2+ handling protein remodelling are profound in intermediately tubulated cells. Our work shows the interaction between TATS and Ca2+ -handling protein remodelling that underlies the Ca2+ -driven proarrhythmic behaviour observed in atrial fibrillation and may help to predict the effects of antiarrhythmic strategies at varying stages of ultrastructural remodelling.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Antiarrítmicos , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio
14.
J Physiol ; 601(13): 2655-2683, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36094888

RESUMO

Intracellular calcium (Ca2+ ) cycling is tightly regulated in the healthy heart ensuring effective contraction. This is achieved by transverse (t)-tubule membrane invaginations that facilitate close coupling of key Ca2+ -handling proteins such as the L-type Ca2+ channel and Na+ -Ca2+ exchanger (NCX) on the cell surface with ryanodine receptors (RyRs) on the intracellular Ca2+ store. Although less abundant and regular than in the ventricle, t-tubules also exist in atrial myocytes as a network of transverse invaginations with axial extensions known as the transverse-axial tubule system (TATS). In heart failure and atrial fibrillation, there is TATS remodelling that is associated with aberrant Ca2+ -handling and Ca2+ -induced arrhythmic activity; however, the mechanism underlying this is not fully understood. To address this, we developed a novel 3D human atrial myocyte model that couples electrophysiology and Ca2+ -handling with variable TATS organization and density. We extensively parameterized and validated our model against experimental data to build a robust tool examining TATS regulation of subcellular Ca2+ release. We found that varying TATS density and thus the localization of key Ca2+ -handling proteins has profound effects on Ca2+ handling. Following TATS loss, there is reduced NCX that results in increased cleft Ca2+ concentration through decreased Ca2+ extrusion. This elevated Ca2+ increases RyR open probability causing spontaneous Ca2+ releases and the promotion of arrhythmogenic waves (especially in the cell interior) leading to voltage instabilities through delayed afterdepolarizations. In summary, the present study demonstrates a mechanistic link between TATS remodelling and Ca2+ -driven proarrhythmic behaviour that probably reflects the arrhythmogenic state observed in disease. KEY POINTS: Transverse-axial tubule systems (TATS) modulate Ca2+ handling and excitation-contraction coupling in atrial myocytes, with TATS remodelling in heart failure and atrial fibrillation being associated with altered Ca2+ cycling and subsequent arrhythmogenesis. To investigate the poorly understood mechanisms linking TATS variation and spontaneous Ca2+ release, we built, parameterized and validated a 3D human atrial myocyte model coupling electrophysiology and spatially-detailed subcellular Ca2+ handling governed by the TATS. Simulated TATS loss causes diastolic Ca2+ and voltage instabilities through reduced Na+ -Ca2+ exchanger-mediated Ca2+ removal, cleft Ca2+ accumulation and increased ryanodine receptor open probability, resulting in spontaneous Ca2+ release and promotion of arrhythmogenic waves and delayed afterdepolarizations. At fast electrical rates typical of atrial tachycardia/fibrillation, spontaneous Ca2+ releases are larger and more frequent in the cell interior than at the periphery. Our work provides mechanistic insight into how atrial TATS remodelling can lead to Ca2+ -driven instabilities that may ultimately contribute to the arrhythmogenic state in disease.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Humanos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Sinalização do Cálcio , Proteínas , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
15.
J Gen Physiol ; 154(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36305844

RESUMO

The sympathetic nervous system fight-or-flight response is characterized by a rapid increase in heart rate, which is mediated by an increase in the spontaneous action potential (AP) firing rate of pacemaker cells in the sinoatrial node. Sympathetic neurons stimulate sinoatrial myocytes (SAMs) by activating ß adrenergic receptors (ßARs) and increasing cAMP. The funny current (If) is among the cAMP-sensitive currents in SAMs. If is critical for pacemaker activity, however, its role in the fight-or-flight response remains controversial. In this study, we used AP waveform analysis, machine learning, and dynamic clamp experiments in acutely isolated SAMs from mice to quantitatively define the AP waveform changes and role of If in the fight-or-flight increase in AP firing rate. We found that while ßAR stimulation significantly altered nearly all AP waveform parameters, the increase in firing rate was only correlated with changes in a subset of parameters (diastolic duration, late AP duration, and diastolic depolarization rate). Dynamic clamp injection of the ßAR-sensitive component of If showed that it accounts for ∼41% of the fight-or-flight increase in AP firing rate and 60% of the decrease in the interval between APs. Thus, If is an essential contributor to the fight-or-flight increase in heart rate.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Animais , Camundongos , Nó Sinoatrial/fisiologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Receptores Adrenérgicos beta , Frequência Cardíaca/fisiologia
16.
Elife ; 112022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255053

RESUMO

Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.


Assuntos
Síndrome do Nó Sinusal , Peixe-Zebra , Camundongos , Animais , Humanos , Síndrome do Nó Sinusal/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Sinoatrial/metabolismo , Fenótipo , Eletrocardiografia/efeitos adversos , Arritmias Cardíacas/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/genética
17.
Chemistry ; 28(59): e202201651, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861144

RESUMO

Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2 O2 with water being the sole by-product. These biocatalysts can provide 'green' routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of α,ß-unsaturated aldehydes with H2 O2 , is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding α,ß-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an ∼150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of α,ß-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.


Assuntos
Aldeídos , Compostos de Epóxi , Oxigênio , Água , Oxidantes , Preparações Farmacêuticas
18.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775488

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide, with an unmet therapeutic need. Fibrotic remodeling, in which collagen-producing atrial fibroblasts play a crucial role, substantially contributes to arrhythmia promotion and progression. In this issue of the JCI, Lai, Tsai, and co-authors reveal that TGF-ß1 promoted endothelial-mesenchymal transition during AF and put forward the notion that, in the adult heart, atrial fibroblasts can originate from different cellular sources. These important findings extend our understanding of the origin, biology, and function of fibroblasts and offer possibilities for therapeutic targeting of fibrosis in AF.


Assuntos
Fibrilação Atrial , Miocárdio , Fator de Crescimento Transformador beta1 , Fibrilação Atrial/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/patologia , Fibrose/patologia , Átrios do Coração/patologia , Humanos , Miocárdio/patologia , Fator de Crescimento Transformador beta1/metabolismo
19.
Sci Adv ; 7(47): eabg0927, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788089

RESUMO

Animal experimentation is key in the evaluation of cardiac efficacy and safety of novel therapeutic compounds. However, interspecies differences in the mechanisms regulating excitation-contraction coupling can limit the translation of experimental findings from animal models to human physiology and undermine the assessment of drugs' efficacy and safety. Here, we built a suite of translators for quantitatively mapping electrophysiological responses in ventricular myocytes across species. We trained these statistical operators using a broad dataset obtained by simulating populations of our biophysically detailed computational models of action potential and Ca2+ transient in mouse, rabbit, and human. We then tested our translators against experimental data describing the response to stimuli, such as ion channel block, change in beating rate, and ß-adrenergic challenge. We demonstrate that this approach is well suited to predicting the effects of perturbations across different species or experimental conditions and suggest its integration into mechanistic studies and drug development pipelines.

20.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260402

RESUMO

Sinoatrial node myocytes (SAMs) act as cardiac pacemaker cells by firing spontaneous action potentials (APs) that initiate each heartbeat. The funny current (If) is critical for the generation of these spontaneous APs; however, its precise role during the pacemaking cycle remains unresolved. Here, we used the AP-clamp technique to quantify If during the cardiac cycle in mouse SAMs. We found that If is persistently active throughout the sinoatrial AP, with surprisingly little voltage-dependent gating. As a consequence, it carries both inward and outward current around its reversal potential of -30 mV. Despite operating at only 2 to 5% of its maximal conductance, If carries a substantial fraction of both depolarizing and repolarizing net charge movement during the firing cycle. We also show that ß-adrenergic receptor stimulation increases the percentage of net depolarizing charge moved by If, consistent with a contribution of If to the fight-or-flight increase in heart rate. These properties were confirmed by heterologously expressed HCN4 channels and by mathematical models of If Modeling further suggested that the slow rates of activation and deactivation of the HCN4 isoform underlie the persistent activity of If during the sinoatrial AP. These results establish a new conceptual framework for the role of If in pacemaking, in which it operates at a very small fraction of maximal activation but nevertheless drives membrane potential oscillations in SAMs by providing substantial driving force in both inward and outward directions.


Assuntos
Relógios Biológicos/fisiologia , Fenômenos Eletrofisiológicos , Miócitos Cardíacos/fisiologia , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Simulação por Computador , Diástole/efeitos dos fármacos , Diástole/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Nó Sinoatrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...